Morphologically Controlled Thermal Rate of Ultra High Performance Concrete

Author:

Cupkova Dana,Yao Shi-Chune,Azel Nicolas

Abstract

ABSTRACTThis research focuses on defining the design principles that integrate passive-system thinking into the built environment with the goal of mitigating building energy usage by self-regulating the heat gain/loss at level of building envelopes. In collaboration with TAKTL, a company that developed and uses advanced Ultra High Performance Concrete (UHPC) integrated with mold design and manufacturing of architectural elements, our research targets how specific manipulation of UHPC surface area in combination with self-regulating thermochromic response can improve building’s energy performance. By coupling the adaptive color response with surface geometry we can suggest new passive sustainable solutions that would mitigate the energy usage with no additional energy input; purely through designing the form and color adaptation for UHPC concrete Trombe wall components integrated within building façade systems. This paper outlines the first part - the thermal behavior in response to surface geometry. Such comprehensive knowledge not only enhances the possibilities within architectural design, but becomes an effective strategy in self-regulating the heat gain/loss at the building surface level, while reducing the need for mechanical building systems.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference7 articles.

1. 4. Rutten David , Galapagos Evolutionary Solver, website .

2. 2. US EPA, Energy Star, website .

3. 3. US Residential Energy Intensity by Census Region and Type of Housing Unit in 2005, Table 7c, US Energy Information Administration < http://www.eia.gov/ > and Architecture 2030: US Residential Regional Averages < ttp://www.architecture2030.org/>.

4. 7. TAKTL, LLC, website .

5. 5. JavaScript Object Notation, website .

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3