Author:
Takasugi T.,Hotta Y.,Shibuya S.,Kaneno Y.,Inoue H.,Tetsui T.
Abstract
ABSTRACTThermomechanically processed TiAl-based intermetallic alloys with various alloy compositions and microstructures were tensile tested in various environmental media including air, water vapor and a mixture gas of 5vol.%H2+Ar as a function of temperature. All the TiAl-based intermetallic alloys showed reduced tensile fracture stress (or elongation) in air, water vapor and a mixture gas of 5vol.%H2+Ar not only at ambient temperature (RT∼600K) but also at high temperature mostly from 600K to 1000K (sometimes higher temperature than 1000K). The high-temperature environmental embrittlement of TiAl-based intermetallic alloy depended upon the microstructure. The possible species causing the high-temperature environmental embrittlement are hydrogen atoms decomposed from water vapor (H2O) or hydrogen gas (H2), similar to those causing the low-temperature environmental embrittlement.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献