Author:
Kiritani Michio,Yasunaga Kazufumi,Matsukawa Yoshitaka,Komatsu Masao
Abstract
ABSTRACTEvidence for plastic deformation of crystalline metal thin foils without dislocations is presented. Direct observation during deformation under an electron microscope confirmed the absence of the operation of dislocations even for heavy deformation. In fcc metals including aluminum, deformation leads to the formation of an anomalously high density of vacancy clusters, in the form of stacking fault tetrahedra. The dependency of vacancy cluster formation on temperature and deformation speed indicates that the clusters are formed by the aggregation of deformation-induced vacancies. Conditions required for the absence of the dislocation mechanism are explained, and a new atomistic model for plastic deformation of crystalline metals is proposed.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献