Author:
Rouleau CM.,Lowndes D.H.,Strauss M.A.,Cao S.,Pedraza A.J.,Geohegan D.B.,Puretzky A.A.,Allard L.F.
Abstract
ABSTRACTEpitaxial thin films of nitrogen-doped p-ZnTe were grown on single-crystal, semi-insulating GaAs substrates via pulsed laser ablation of a stoichiometric ZnTe target. Both low pressure nitrogen ambients and high vacuum were used. Results of in situ reflection high energy electron diffraction (RHEED) and time-resolved ion probe measurements have been compared with ex situ Hall effect and transmission electron microscopy (TEM) measurements. A strong correlation was observed between the nature of the film's surface during growth (2-D vs. 3-D, assessed via RHEED) and the ambient gas pressures employed during deposition. The extended defect content (assessed via cross-sectional TEM) in the region >150 nm from the film/substrate interface was found to increase with the ambient gas pressure during deposition, which could not be explained by lattice mismatch alone. At sufficiently high pressures, misoriented, columnar grains developed which were not only consistent with the RHEED observations but also were correlated with a marked decrease in Hall mobility and a slight decrease in hole concentration. Ion probe measurements, which monitored the attenuation and slowing of the ion current arriving at the substrate surface, indicated that for increasing nitrogen pressure the fast (vacuum) velocity-distribution splits into a distinct fast and two collisionally-slowed components or modes. Gas-controlled variations in these components mirrored trends in electrical properties and microstructural measurements.
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Crystalline phases of II‐VI compound semiconductors grown by pulsed laser deposition
2. Pulsed‐laser ablation growth of epitaxial ZnSe1−xSxfilms and superlattices with continuously variable composition
3. 23 Lowndes D.H. , Rouleau CM. , Geohegan D.B. , Puretzky A.A. , Strauss M.A. , Pedraza A.J. , Park J.W. , Budai J.D. and Poker D.B. , Pulsed Laser Ablation Growth and Doping of Epitaxial Compound Semiconductor Films, these proceedings.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献