Silicon Growth Rate Enhancement Using Trisilane in a Laser Direct-Writing Technique

Author:

Boughaba S.,Auvert G.

Abstract

ABSTRACTAn argon-ion laser based direct-writing technique was used to deposit micron-size silicon lines from the decomposition of silane (SiH4) and trisilane (Si3H8) gases. The substrates used were 0.1 μrn polysilicon/1 μ.m silicon dioxide/<100> monosilicon multilayered structures. The vertical silicon deposition rate was investigated as a function of the laser-induced surface temperature and gas pressure. For temperatures ranging between 1000 and 1410 °C, the pressure was varied in the range 5-250 mbar and 0.1-30 mbar for SiH4 and Si3H8, respectively. For both gases, three growth regimes could be distinguished according to precursor pressure. The deposition rates achieved using trisilane are far higher than those obtained with silane in spite of the use of a reduced gas pressure range. For a laser-induced surface temperature of 1300 °C and a precursor pressure of 10 mbar, the deposition rates achieved using SiH4 and Si3H8 are, respectively, 0.42 and 20 μ.m/s, representing an enhancement factor of 50 with the later.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3