Deformation Mechanisms and Solid-Solution Strengthening in Ordered Alloys

Author:

Dimiduk Dennis M.,Rao Satish

Abstract

ABSTRACTFundamental to understanding the results of alloy design studies, is the need for understanding the intrinsic role of solutes in a particular compound. For many compounds such an understanding must be built from a systematic exploration of the role of deviations from the stoichiometric composition as well as the role of ternary solute additions on the variation of flow behavior. Within most intermetallic systems the problem is complicated since the fundamental mechanisms of flow are not well established and, in those systems where these mechanisms are known, thermal activation can lead to dislocation-core transformations and changes in the operative slip systems with temperature. In general, flow may be governed by more than one dislocation process at a given temperature and deformation twinning may be a major contributing deformation mechanism. The problem of isolating the mechanisms of solid-solution hardening may, therefore, require treatment as a problem of combined strengthening mechanisms operating in parallel. This paper reviews the key aspects of deformation mechanisms and solute strengthening in intermetallic alloys. Classical elastic theories of solute hardening serve as an origin, from which, the progress made to date in isolating the mechanisms of solute hardening in ordered alloys is discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3