Synthesis of a Metallic Ceramic -Ti3SiC2 by PDS Process and its Properties

Author:

Sun ZhengMing,Hashimoto Hitoshi,Zhang ZheFeng,Yang SongLang,Abe Toshihiko

Abstract

ABSTRACTPowder mixtures of Ti/Si/C, Ti/SiC/C, Ti/Si/TiC, Ti/SiC/TiC and Ti/TiSi2/TiC were used for the synthesis of Ti3SiC2 by using a pulse discharge sintering (PDS) process. The Ti/Si/TiC powder was found to be the best among the five powder mixtures for the Ti3SiC2 synthesis. The highest content of Ti3SiC2 can be improved to about 99wt% at the sintering temperature of 1300°C for 15 minutes. The relative density of all the synthesized samples is higher than 98–99% at the sintering temperature above 1275°C. The nearly single phase Ti3SiC2 was found to show plastic deformation at room temperature and a good machinability. Both electrical and thermal conductivity were found to be more than two times of the value of a control pure Ti sample. The high-temperature mechanical tests confirmed that the Ti3SiC2 samples synthesized by the PDS process displayed a comparable performance with those fabricated by the other techniques.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3