High Quality Epitaxial V2O3 Thin Films: A Material for Infrared Switching Devices?

Author:

Schuler H.,Grigoriev S.,Horn S.

Abstract

ABSTRACTThe compound V20O13 undergoes a metal-insulator-transition (MIT) at T=150K with an optical gap in the insulating phase of ∼0.6eV. Therefore epitaxial films of V2O3 are of interest for infrared (IR) applications. We present the results of a systematic study of the growth conditions of such films utilizing electronic transport and infrared transmission measurements in addition to studies of crystal and microstructure.Epitaxial V2O3 thin films were grown in a reactive oxygen atmosphere on c-axis oriented sapphire substrates by electron beam evaporation. While V2O3 single crystals show a MIT in a narrow temperature range ΔT < 1K, the MIT broadened in epitaxial thin films due to defects and stress induced by the film-substrate interaction.In our study we defined the quality of the films by the width ΔT of the transition and the change of resistivity p and IR transmission at the MIT. We found the most important growth parameter to be the growth temperature. Only in a narrow region around 600°C the growth of high quality films was observed. The optical constants of such films were determined from IR transmission measurements in combination with an oscillator fit method. While the spectra in both the metallic and the insulting phase are dominated by d-d-transitions for photon energies above leV, in the IR region (λ > 2μm) a high transmission contrast between the two phases was almost independent of the wavelength. This behavior suggests e.g. applications as a non mechanical IR shutter or as switchable interference filter in the IR regime.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3