Author:
Sikkema Doetze J.,Northolt Maurits G.,Pourdeyhimi Behnam
Abstract
AbstractHigh-performance fibers, used in fabric applications ranging from bulletproof vests to trampolines, must have a sufficient number of chemical and physical bonds for transferring the stress along the fiber. To limit their deformation, the fibers should possess high stiffness and strength. Stiffness is brought about by the degree to which the chemical bonds are aligned along the fiber axis. In fiber-reinforced composites, the fibers are the load-bearing element in the structure, and they must adhere well to the matrix material. An ideal reinforcing fiber must have high tensile and compressive moduli, high tensile and compressive strength, high damage tolerance, low specific weight, good adhesion to the matrix materials, and good temperature resistance. This article reviews and compares the properties and behavior of novel high-performance fiber materials including polyethylene, aramid, polybenzobisoxazole, M5, and carbon fibers.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献