The Riddle Of Nde For Embrittlemient Detection

Author:

Blaszkiewicz M.

Abstract

ABSTRACTThe ability to nondestructively determine the level of irradiation induced degradation in nuclear reactor pressure vessels (RPVs) would enhance the integrity assessment currently used by the nuclear industry. Presently, destructive testing of Charpy specimens from surveillance capsules is used to approximate the RPV upper shelf energy and the ductile-to-brittle transition temperature, and approved models and guidelines are used to determine the state of embrittlement. However, these models and surveillance programs do not always provide enough accurate information to support decisions for premature RPV life termination, life continuation to license expiration, or life renewal and extension by means of annealing. Effective nondestructive techniques would extend the usefulness of the surveillance material by reducing the amount of material used for destructive studies, and ultimately by allowing tests to be performed directly on the RPV. Nondestructive techniques, ranging from electrical resistivity to hyperfine interactions, have been, and continue to be, explored for use in embrittlement assessment. The current states of these various techniques are discussed, and future directions for research are suggested.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference18 articles.

1. 17. Van Ouytsel K. , Personal Communication, 1995.

2. 9. Shong W. -J , Williams J. G. , and Stubbins J. F. , “Interrogation of Radiation Effects in Nuclear Pressure Vessel Steels Using Magnetic Properties Measurements,” ANS Transactions, pp. 192–193, November 1993.

3. An Overview of Radiation Embrittlement Modeling for Reactor Vessel Steels

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3