Abstract
ABSTRACTWe have experimentally Investigated the effects that are associated with Multiple-pulse irradiation in the excimer laser processing of thin Si films on SiO2. Double-pulse irradiation experiments revealed results, which are consistent with that which is known from single-pulse crystallization experiments, and these experiments confirm the applicability of the transformation scenarios, which were derived from single pulse-induced crystallization experiments [1,2]. The results from the Multiple-pulse irradiation experiments clearly show that gradual and substantial grain enlargement can occur — and only occurs — when the irradiation energy density is close to but less than the level that is required to melt the film completely. Based on these findings, we argue that the grain enlargement effect is a near-complete melting phenomenon that is associated with polycrystalline Si films, and we present a grain boundary melting model to account for this phenomenon. A brief discussion on the apparent similarities and physical differences between the observed phenomenon and the solid state grain growth processes is provided herein.
Publisher
Springer Science and Business Media LLC
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献