Clay Nanolayer Reinforcement of a Glassy Epoxy Polymer

Author:

Massam Jarrod,Pinnavaia Thomas J.

Abstract

ABSTRACTGlassy epoxy-clay nanocomposites (Tg ≈ 82 °C) have been prepared by the reaction of diglycidyl ether of bisphenol A and a polyoxyalkylene amine curing agent in the presence of organo cation exchanged smectite (montmorillonite) clays. Commercially available AMS and CWC montmorillonites purified on the industrial scale (Nanocor, Inc.) afforded nanocomposites with performance properties comparable to those obtained from montmorillonite purified by laboratory methods. We provide the first evidence for clay nanolayer reinforcement of a glassy epoxy matrix under compressive strain. Compression stress - strain experiments revealed substantial improvements in the modulus and yield strength when the clay nanolayers were exfoliated in the glassy matrix. However, no improvement in the modulus or yield strength was observed when the clay component was merely intercalated by the epoxy matrix, signifying that nanolayer exfoliation is an essential feature of reinforcement. Furthermore, the mechanical properties of epoxy-clay nanocomposites prepared with the C18H37NH3+ - exchanged forms of the AMS and CWC clays have been tested by dynamic mechanical analysis and thermal mechanical analysis. The nanocomposites exhibit improved dynamic storage modulus above and below the glass transition temperature, as well as lower coefficients of thermal expansivity compared to the pure polymer. In addition, the solvent resistant properties of the nanocomposites are substantially improved compared to the pristine polymer.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermomechanical Characterization Of Organo-Clay Epoxy Nanocomposites for Use in Civil Infrastructure;Polymer-Plastics Technology and Materials;2021-09-15

2. Effects of mixing sequence on epoxy/polyether polyol/organoclay ternary nanocomposites;Plastics, Rubber and Composites;2020-05-14

3. Molecular Dynamics Study of Ternary Montmorillonite–MT2EtOH–Polyamide-6 Nanocomposite: Structural, Dynamical, and Mechanical Properties of the Interfacial Region;The Journal of Physical Chemistry B;2019-03-01

4. Process-Structure-Property Relationship in Polymer Nanocomposites;Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and their Polymer Composites;2018

5. Epoxy Resins;Reactive Polymers: Fundamentals and Applications;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3