Fabrication and tuning soft magnetic and magneto-optical properties of BMGs based Fe-B-Nb-Ni transparent thin films, obtained by Pulsed Laser Deposition.

Author:

Masood Ansar,Afridi A. A.,Ström V.,Riazanova A.,Belova L.,Rao K. V.

Abstract

ABSTRACTWe have fabricated by pulse laser deposition very thin (∼5-7 nm) and thick (∼27-408 nm) films of composition Fe66B24Nb4Ni6 on silicon and quartz substrates respectively, and studied their magnetic and magneto-optic properties at room temperature. We find that the thicker films on silicon can be tuned by appropriate thermal annealing to exploit soft magnetic characteristics with low HC, and high MS values. The magnetic hysteretic loops of the as-deposited thicker films on silicon substrates show two interesting characteristics: 1) increase in the coercivity with the film thickness and 2) the onset of a two stage process during the approach to magnetic saturation. The initial in-plane characteristic of the hysteresis loop is followed by a linear anisotropic behavior between remanence and saturation- that changes into square soft-magnetic loops on decreasing the film thickness. By suitable annealing the intrinsic strain disappears at relatively low temperatures (≤200 oC); the thicker films can be tailored to exhibit a simple soft-magnetic square loop with low HC. The ∼5-7 nm films deposited on glass are transparent and have been investigated for their magneto-optic properties using Faraday rotation (FR) measurement technique. Very high values of FR in the range 4-20 deg/µm almost linearly dependent on the wavelength of light in the range 405-611 nm are observed. The observed high values of Faraday rotation over a wide range of wavelength of light are useful for the applications as magneto-optic sensors in the UV to visible range.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3