Critical Metrics and Fundamental Materials Challenges for Renewable Hydrogen Production Technologies

Author:

Miller Eric L.,Peterson David,Randolph Katie,Ainscough Chris

Abstract

ABSTRACTThe US Department of Energy’s (DOE) Fuel Cell Technologies Office has made significant progress in fuel cell technology advancement and cost reduction. Encouragingly, rollouts of fuel-cell vehicles by major automotive manufacturers are scheduled over the next several years. With these rollouts, enabling technologies for the widespread production of affordable renewable hydrogen becomes increasingly important. Near-term utilization of current reforming and electrolytic processes is necessary for early hydrogen markets, but transitioning to industrial-scale renewable hydrogen production remains essential to the longer term. Central to the long term vision is a portfolio of renewable hydrogen conversion processes, including, for example, the direct photoelectrochemical and thermochemical routes, as well as photo-assisted electrochemical routes. DOE utilizes technoeconomic analyses to assess the long-term viability of these emerging hydrogen production pathways and to help identify key materials- and system-level cost drivers. Sensitivity analysis from the technoeconomic studies will be discussed in connection with the metrics and fundamental materials properties that have direct impact on hydrogen cost. It is clear that innovations in macro-, meso- and nano-scale materials are all needed for pushing forward the state-of-the-art. These innovations, along with specific research and development pathways for advancing materials systems for the renewable hydrogen conversion technologies are discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference18 articles.

1. 10. DOE Hydrogen and Fuel Cell Technologies Program , DOE H2A Analysis . http://www.hydrogen.energy.gov/h2a_analysis.html.

2. 17. Deutsch T. and Turner J. , in DOE Hydrogen and Fuel Cell Technologies Program, Hydrogen Production and Delivery Annual Merit Review Proceedings, 2013. http://www.hydrogen.energy.gov/pdfs/review13/pd035_deutsch_2013_o.pdf

3. 3. DOE Hydrogen and Fuel Cell Technologies Program, Fuel Cell System Cost -2013 , http://hydrogen.energy.gov/pdfs/13012_fuel_cell_system_cost_2013.pdf.

4. 16. McDaniel A. and Ermanoski I , in DOE Hydrogen and Fuel Cell Technologies Program, Hydrogen Production and Delivery Annual Merit Review Proceedings, 2013. http://www.hydrogen.energy.gov/pdfs/review13/pd081_mcdaniel_2013_o.pdf

5. 1. Global Hydrogen Generation MARKET , Markets and Markets , 2011.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3