Defects and Doping in Nanocrystalline Silicon-Germanium Devices

Author:

Konduri Siva,Mulder Watson,Dalal Vikram L.

Abstract

ABSTRACTNanocrystalline Silicon-Germanium (Si,Ge) is a potentially useful material for photovoltaic devices and photo-detectors. Its bandgap can be controlled across the entire bandgap region from that of Si to that of Ge by changing the alloy composition during growth. In this work, we study the fabrication and electronic properties of nanocrystalline devices grown using PECVD techniques. We discovered that upon adding Ge to Si during growth, the intrinsic layer changes from n-type to p-type. We can change it back to n-type by using ppm levels of phosphorus, and make reasonable quality devices when phosphine gas was added to the deposition mix. We also measured the defect density spectrum using capacitance frequency techniques, and find that defect density decreases systematically as more phosphine is added to the gas phase. We also find that the ratio of Germanium to Silicon in the solid phase is higher than the ratio in the gas phase.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3