Improved Biphasic Pulsing Power Efficiency with Pt-Ir Coated Microelectrodes

Author:

Petrossians Artin,Davuluri Navya,Whalen John J.,Mansfeld Florian,Weiland James D.

Abstract

ABSTRACTNeuromodulation devices such as deep brain stimulators (DBS), spinal cord stimulators (SCS) and cochlear implants (CIs) use electrodes in contact with tissue to deliver electrical pulses to targeted cells. In general, the neuromodulation industry has been evolving towards smaller, less invasive devices. Improving power efficiency of these devices can reduce battery storage requirements. Neuromodulation devices can realize significant power savings if the impedance to charge transfer at the electrode-tissue interface can be reduced. High electrochemical impedance at the surface of stimulation microelectrodes results in larger polarization voltages. Decreasing this polarization voltage response can reduce power required to deliver the current pulse. One approach to doing this is to reduce the electrochemical impedance at the electrode surface. Previously we have reported on a novel electrochemically deposited 60:40% platinum-iridium (Pt-Ir) electrode material that lowered the electrode impedance by two orders of magnitude or more.This study compares power consumption of an electrochemically deposited Pt-Ir stimulating microelectrode to that of standard Pt-Ir probe microelectrode produced using conventional techniques. Both electrodes were tested using in-vitro in phosphate buffered saline (PBS) solution and in-vivo (live rat) models.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3