Electro-Chemo-Mechanical Modeling of the Artery Myogenic Response

Author:

Li Yali,Goulbourne Nakhiah

Abstract

ABSTRACTActive contraction of smooth muscle results in the myogenic response and vasomotion of arteries, which adjusts the blood flow and nutrient supply of the organism. It involves coupled electrobiochemical and chemomechanical processes. This paper presents a new constitutive model to describe the myogenic response of the artery wall under different transmural pressures. The model includes two major components: a cell-level model for the electrobiochemical process, and a tissue-level model for the chemomechanical coupling. The electrochemical model is a lumped Hodgkin-Huxley-type cell membrane model for the nanoscopic ionic currents: calcium, sodium, and potassium. The calculated calcium concentration serves as input for the chemomechanical portion of the model; its molecular binding and the reactions with other enzymes cause the relative sliding of thin and thick filaments of the contractile unit. In the chemomechanical model, a new nonlinear viscoelastic model is introduced to describe the time varying behavior of the smooth muscle. Specifically, this model captures the filament overlap effect, active stress evolution, initial velocity, and elastic recoil in the media layer. Using the proposed constitutive model and a thin-walled equilibrium equation, the myogenic response is calculated for different transmural pressures. The integrated model is able to capture the pressure-diameter relationship incorporating fewer parameters than previous work and with clear physical meanings.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3