Investigation of High-Efficiency Vibration Energy Transducer with Dual-Modal ZnO Piezoelectric Thin Films

Author:

Chen Ying-Chung,Chang Wei-Tsai,Cheng Chien-Chuan,Mao Chun-Kai,Kao Kuo-Sheng

Abstract

ABSTRACTThis paper reports a novel means of integrating a high-performance dual-modal ZnO piezoelectric transducer with a flexible stainless steel substrate (SUS304) to construct dual-modal vibration-power transducers. To fabricate vibration-power transducers, the off-axis RF magnetron sputtering method for the growth of ZnO piezoelectric thin films is adopted. The stainless steel substrate has a higher Young’s modulus than those of the other substrates, and behaves the long-term stability under vibration. The transducer includes a ZnO piezoelectric thin film deposited on the stainless steel substrate combined with Pt/Ti layers at room temperature, which is fabricated by an RF magnetron two-step sputtering system. In this report, the ZnO piezoelectric thin films deposited with the tilting angle of 34° are set by controlling the deposition parameters. Scanning electron microscopy and X-ray diffraction of ZnO piezoelectric thin films reveal a rigid surface structure and a high dual-modal orientation. To investigate the generating characteristics of the dual-modal transducer, two basic experiments of longitudinal and shear modes are carried out. Based on cantilever vibration theory, the cantilever length of 1 cm and a vibration area of 1 cm2 are used to fabricate a transducer with a low resonant-frequency of 65 Hz for the natural vibration. A mass loading at the front-end of the cantilever is critical to increase the amplitude of vibration and the power generated by the piezoelectric transducer. The maximum open circuit voltage of the power transducer is 19.4 V.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3