Electrical Conductivity and Structural Order of p-Type Amorphous Silicon Thin Films

Author:

Shrestha K.,Whitfield D.,Lopes V. C.,Syllaios A. J.,Littler C.L.

Abstract

ABSTRACTThe dependence of dark conductivity and room temperature Raman spectra on boron and hydrogen incorporation in thin films of hydrogenated amorphous silicon (a-Si:H) prepared by plasma enhanced chemical vapor deposition was investigated. It was found that the dominant conductivity is Mott variable range hopping conduction. However, at lower temperatures, Efros-Shklosvkii hopping conduction is observed and contributes to the total conductivity. For structural characterization, transverse optical (TO) and transverse acoustic (TA) modes of the Raman spectra were studied to relate changes in short- and mid-range order to the effects of boron and hydrogen incorporation. With an increase of hydrogen incorporation and/or substrate temperature, both short and mid-range order improve, whereas the addition of boron results in the degradation of the short range order. The line width and frequency of the Raman TO Raman peak correlate with electrical measurements and suggest that this technique can be used for non-destructive characterization of a-Si:H.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3