Quantitative Porosity Studies of Archaeological Ceramics by Petrographic Image Analysis

Author:

Reedy Chandra L.,Anderson Jenifer,Reedy Terry J.

Abstract

ABSTRACTPores in archaeological ceramics can form in a number of different ways, and reflect both deliberate choices and uncontrollable factors. Characterizing porosity by digital image analysis of thin sections holds a number of advantages as well as limitations. We present the results of experiments aimed at improving this method, focusing on high-resolution scans of entire thin sections. We examine the reproducibility of pore measurements by petrographic image analysis of ceramic thin sections using laboratory-prepared specimens of clay mixed with sand of known amount and size. We outline protocols for measuring Total Optical Porosity, using the Image-Pro Premier software package. We also briefly discuss use of pore size and pore shape (aspect ratio and roundness) in characterizing archaeological ceramics. While discerning reasons for observed amounts, sizes, and shapes of pores is an extremely complex problem, the quantitative analysis of ceramic porosity is one tool for characterizing a ware and comparing a product to others. The methods outlined here are applied to a case study comparing historic bricks from the Read House in New Castle, Delaware; the porosity studies indicate that different construction campaigns used bricks from different sources.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3