Materials Research for High Energy Density Electrochemical Capacitor

Author:

Burke Andrew F.

Abstract

AbstractIn April 2007, the Office of Basic Energy Science, United States Department of Energy organized and conducted a Basic Energy Sciences Workshop for Electrical Energy Storage at which basic research needs for capacitive energy storage were considered in detail. This paper is intended to highlight the materials research findings/needs of the workshop and to relate them to the development of high energy density capacitors that can have an energy density approaching that of lead acid batteries, a power density greater than that of lithium ion batteries, and cycle life approaching that of carbon/carbon double-layer capacitors. Capacitors inherently have long cycle life and high power capability so the key issue is how to increase their energy density with minimum sacrifice of their inherent cycle life and power advantages. This requires the development of electrode charge storage materials with an effective high specific capacitance (F/g) and high electronic conductivity. The most promising electrode materials appear to be optimized activated carbons, graphitic carbons, nanotube carbons, and metal oxides. Cells can be assembled that utilize one of these materials in the one electrode and another of the material in the other electrode. Such hybrid cells can operate at 3-4V using organic electrolytes and potentially can have energy densities of 15-25 Wh/kg. Initial research is also underway on solid-state, high energy density devices utilizing high dielectric materials (K>15000) which would operate at very high cell voltage. If such dielectric materials can be developed, these devices may have energy densities approaching those of lithium batteries.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference37 articles.

1. 33 Miller J.R. and Burke A.F. , Electric Vehicle Capacitor Test Procedures Manual (Revision 1), Idaho National Engineering Laboratory Report No. DOE/ID-10491, October 1994

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3