Author:
Park Dong-Soo,Choi Hyun-Ju,Han Byung-Dong,Kim Hai-Doo,Lim Dae-Soon
Abstract
Silicon nitride–Si2N2O in situ composites were prepared by hot pressing powder mixtures of α–Si3N4, 6 wt% Y2O3, 1 wt% Al2O3, and 0–12 wt% SiO2. X-ray diffraction (XRD) analysis indicated that the volume percents of Si2N2O were 0, 13, 31, and 54 for the composites prepared with 0, 4, 8, and 12 wt% SiO2, respectively. XRD results also indicated that both silicon nitride grains and Si2N2O grains were laid down perpendicular to hot pressing direction. As the volume percent of Si2N2O increased, the width and the amount of elongated silicon nitride grains decreased, but the fracture toughness increased. Young's modulus of the in situ composites decreased as the Si2N2O content was increased. The erosion rate decreased as the Si2N2O content was increased, in part, due to both the increased fracture toughness and the reduced grain size. Erosion of the composites occurred primarily due to the grain dislodgment. The sample without Si2N2O experienced micro-chipping due to transgranular fracture.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献