Author:
Mukherjee P. K.,Chakravorty D.
Abstract
Fluorphlogopite mica crystallites of dimensions in the range 0.5 to 24 µm were grown within silicate glass of suitable compositions by heat treatment at 1168 K. After an ion exchange treatment (K+ ⇆ Ag+) the specimens were subjected to an electrodeposition reaction. With the optimum concentration of K+ ions in the precursor glass, electrodeposition brought about the growth of silver nanowires about 0.5 nm diameter within the nanochannels of the fluorphlogopite mica structure. By applying a voltage pulse of 20 volts of duration 3 s, break junctions could be induced in the nanowires. A high dielectric constant of around 1.0 × 107was found in the resultant specimen. This was shown to be quantum mechanical in origin and arose due to the presence of metal filaments about 1280 nm in length. An asymmetric voltage–current characteristic was recorded at 114 K in the case of the specimen containing silver nanowires grown within the mica structure. This is believed to arise due to formation of a nanojunction between the metal nanowire and silver nanoparticles with diameters of less than 3 nm. The latter were earlier shown to behave as insulators
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献