Magnetic Anisotropy of Sm(Co0.68Fe0.22Cu0.08Zr0.02)7.7 Ribbons Produced by Melt Spinning

Author:

Yan A-Ru,Sun Zhi-Gang,Han Baoshan,Shen Bao-Gen

Abstract

A high degree of texture was observed in melt-spun Sm(Co0.68Fe0.22Cu0.08Zr0.02)7.7 ribbons prepared by single-roller melt spinning at low wheel speed; their easy magnetization axis was parallel to the ribbon plane. Magnetization studies showed an obvious magnetic anisotropy and a 90% higher remanance in ribbons for the field parallel to the longitudinal direction (8.5 kGs) than that for the field parallel to the wide direction (4.4 kGs); this was attributed to a dendritic structure of needle-size grains (2–3 × 10–40 μm) with their long axis parallel to the ribbon plane. This texture allowed the development of a new process for producing anisotropic permanent magnets. The domain structure was studied by magnetic-force microscope. A highly ordered and strip-shaped magnetic domain structure was observed on the surface of the ribbons. This was due to the preference for tetragonal c-axis orientation parallel to the surface of melt-spun ribbons. We calculated the domain wall energy γ and critical single-domain particle size Dc of Sm(Co0.68Fe0.22Cu0.08Zr0.02)7.7 ribbons.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3