Author:
Paik Jong-Ah,Fan Shih-Kang,Kim Chang-Jin,Wu Ming C.,Dunn Bruce
Abstract
The high porosity and uniform pore size of mesoporous oxide films offer unique opportunities for microelectromechanical system (MEMS) devices that require low density and low thermal conductivity. This paper provides the first report in which mesoporous films were adapted for MEMS applications. Mesoporous SiO2 and Al2O3 films were prepared by spin coating using block copolymers as the structure-directing agents. The resulting films were over 50% porous with uniform pores of 8-nm average diameter and an extremely smooth surface. The photopatterning and etching characteristics of the mesoporous films were investigated and processing protocols were established which enabled the films to serve as the sacrificial layer or the structure layer in MEMS devices. The unique mesoporous morphology leads to novel behavior including extremely high etching rates and the ability to etch underlying layers. Surface micromachining methods were used to fabricate three basic MEMS structures, microbridges, cantilevers, and membranes, from the mesoporous oxides.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献