Microstructure formation and phase selection in the solidification of Al2O3–5 at% SiO2 melts by splat quenching

Author:

Li Mingjun,Nagashio Kosuke,Kuribayashi Kazuhiko

Abstract

An Al2O3–5 at% SiO2 specimen was levitated in an Aero-Acoustic Levitation apparatus and then melted when a continuous-wave CO2 laser beam heating system was incorporated. The sample can be highly undercooled when decreasing the laser power. Rapid solidification by splat quenching can be realized at defined temperatures, using well-polished copper as chilling anvils. Microstructure transition from nonfaceted colony to strong faceted dendrites was observed when the melt was quenched at ΔT = 50 K, indicating that a kinetic contribution for roughening the microstructure may be significant for the morphology transition. The impacting, spreading, and solidifying processes were analyzed on the basis of microstructure observation. The additional undercooling was suggested to vary per an exponential relation with distance when the kinetic effect was taken into account. The nucleation behavior was also discussed according to the proposed additional undercoolings to demonstrate the difference in nucleation population at various regions. When the melt undercooling increases to 190 K, a double-phase structure with small polycrystalline inclusion embedded into amorphous matrix was obtained. The continuous cooling transformation profile was proposed to account for the phase selection upon quenching. The present observation and suggested model for acquiring high additional undercoolings are useful in elucidating the work of others.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3