Author:
Wang Moo-Chin,Wu Nan-Chung,Yang Sheng,Wen Shaw-Bing
Abstract
β-Spodumene (Li2O · Al2O · 4SiO2, LAS4) precursor powders were obtained through a sol-gel process using Si(OC2H5)4, Al(OC4H9)3, and LiNO3 as starting materials and LiF as a sintering aid. X-ray diffraction, scanning electron microscopy, scanning transmission electron microscopy with a wavelength dispersive spectrometer, and electron diffraction analysis were utilized to study the phase transition of the β-spodumene glass–ceramics prepared from the gel-derived precursor powders with LiF additive. For the LAS4 precursor powders containing no LiF, the only crystalline phase obtained was β-spodumene. For the pellets containing less than 4.0 wt% LiF and sintered at 1050 °C for 5 h, the crystalline phases were β-spodumene solid solution and β-eucryptite (Li2O · Al2O3 · 2SiO2, LAS2) solid solution. When the LiF content was 5.0 wt% and the sintering process was carried out at 1050 °C for 5 h, the crystalline phases were β-spodumene solid solution, β-eucryptite solid solution (triclinic), and eucryptite [rhombohedral (hex.)]. When the LiF addition attains 3.0 wt%, the fully densified grains are formed, accompanied with an increase in grain size for LiF addition. At the triple junction of grain boundaries a second phase segregates which is identified to be β-spodumene solid solution. In the sintering period of LAS4 precursor powders with LiF additive, the grains converted to β-eucryptite solid solution and β-spodumene solid solution remains at the grain boundaries.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献