Squeeze casting of SiCp/Al-alloy composites with various contents of reinforcements

Author:

Chen Liang-Guang,Shue Kung-Hsien,Chang Shou-Yi,Lin Su-Jien

Abstract

Aluminum matrix composites reinforced with various contents and sizes of silicon carbide particles (SiCp) were fabricated by squeeze casting. A lower melting point AA A383 aluminum alloy (A383 Al) was squeezed into the higher melting point SiCp/pure aluminum (SiCp/pure Al) and SiCp/AA 6061 aluminum alloy (SiCp/6061 Al) preforms. The volume percents of the ceramic reinforcements were effectively lowered from traditional 50 to 8–25 vol% by the addition of pure Al and 6061 Al powders in the preforms. The SiC particles uniformly distributed within the matrices, and no pore was found in these composites. The growth of silicon precipitates in A383 Al alloys was limited by the addition of the aluminum alloy powders and SiC particles, and the tensile properties of the alloys were effectively enhanced by the refinement of the silicon precipitates. The tensile strengths and elongations of the SiCp/pure Al/A383 Al and SiCp/6061 Al/A383 Al composites were both better than those of the A383 Al alloy. The T6-treated 12-μm SiCp/6061 Al/A383 Al composite exhibited the highest tensile strength of 301 MPa.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3