Author:
Chen Liang-Guang,Shue Kung-Hsien,Chang Shou-Yi,Lin Su-Jien
Abstract
Aluminum matrix composites reinforced with various contents and sizes of silicon carbide particles (SiCp) were fabricated by squeeze casting. A lower melting point AA A383 aluminum alloy (A383 Al) was squeezed into the higher melting point SiCp/pure aluminum (SiCp/pure Al) and SiCp/AA 6061 aluminum alloy (SiCp/6061 Al) preforms. The volume percents of the ceramic reinforcements were effectively lowered from traditional 50 to 8–25 vol% by the addition of pure Al and 6061 Al powders in the preforms. The SiC particles uniformly distributed within the matrices, and no pore was found in these composites. The growth of silicon precipitates in A383 Al alloys was limited by the addition of the aluminum alloy powders and SiC particles, and the tensile properties of the alloys were effectively enhanced by the refinement of the silicon precipitates. The tensile strengths and elongations of the SiCp/pure Al/A383 Al and SiCp/6061 Al/A383 Al composites were both better than those of the A383 Al alloy. The T6-treated 12-μm SiCp/6061 Al/A383 Al composite exhibited the highest tensile strength of 301 MPa.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献