Cold isostatic compaction of nano-size powders: Surface densification and dimensional asymmetry

Author:

Li Wenxia,Lannutti John J.

Abstract

Cold isostatic pressing (CIP) is often used in the compaction of nano-sized powders. For technological reasons, however, uniaxial pressing prior to CIP takes place. This paper reveals the first quantitative measurements of density gradients within and the asymmetric sintering response of nanoscale zirconia compacts formed by (i) simple uniaxial compaction and (ii) specific ratios of uniaxial and CIP pressure. We find that CIP forms an exterior “skin” of higher but variable surface density and decreases the width of the density distribution. It does not eliminate density gradients; nonuniform shrinkage still occurs during sintering. The high- and low-density zones (the moving and fixed ram ends, respectively) that form during uniaxial compaction are reversed during CIP. Considering both density distribution width and spring-back cracking, the “best” uniaxial-CIP pressure combination is 1–20 ksi for this particular powder and an L/D of 1.0. The greater final compaction of the low-density zone during CIP causes relatively large variations in final dimensions (nearly 400 microns) in spite of the smaller density distribution width. The usually neglected uniaxial pressing step has definite technological impacts on the production of nanostructured components via compaction.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3