Author:
Iglesias A.,Balmaseda J.,Arias A. González
Abstract
An investigation of the effects of the iron defect k in LiZnTiMn ferrites using Mössbauer spectroscopy and ferromagnetic resonance techniques was carried out in single-phased samples. Results show that the isomer shifts have values corresponding to a compound with either low-spin Fe(II), low-spin Fe(III), or high-spin Fe(III). On the other hand, the Lande factor and the ferromagnetic resonance linewidth disclosed that g is always very close to 2, being equal to 2.02 when k = 0.06. A minimum in ΔH was detected for this value of k. From these results, the possible presence of Fe2+ in the samples could be excluded, and it was concluded that the changes in ΔH are due to the variation of the Fe(III) contents in the tetrahedral and octahedral sites. The existence of the minimum in ΔH is due to a compensation point in the magnetocrystalline anisotropy.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献