Ferromagnetism discovered on heat-treating the aromatic polyimide film Kapton

Author:

Kaburagi Yutaka,Hishiyama Yoshihiro

Abstract

A commercially available aromatic polyimide film Kapton H 25-μm thick was heat-treated at temperatures between 490 and 540 °C in a nitrogen flow. Magnetization was measured as a function of magnetic field at 5 and 300 K and function of temperature in a field of 1 T. Diamagnetic and paramagnetic components were observed for all heat-treated films. Ferromagnetism was discovered even at 300 K in the films heat-treated at 490–520 °C. The saturation magnetization, coercive force, and residual magnetization for the 520 °C treated film were 0.059 J T−1 kg−1, 0.004 T, and 9 × 10−4 J T−1 kg−1, respectively, at 300 K. The ferromagnetism has been maintained 5 months after. Original Kapton H and the heated films were found to contain no metallic elements. The ferromagnetism should be caused by a long-range magnetic spin ordering of unpaired electrons located on slightly decomposed imide molecules with defects or on intermediates with free radicals formed by thermal decomposition. The ordering is probably established three dimensionally throughout the heat-treated films with a structural regularity similar to that of the original Kapton H.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spider silk inspires a new route to organic magnets;MRS Bulletin;2024-03-05

2. Ferromagnetism in Metal-Free Polymers;IEEE Magnetics Letters;2015

3. Magnetic Nanocarbon;Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition;2014-06-10

4. Ferromagnetism in Thermally Decomposed Polyimide Films;Journal of Macromolecular Science, Part B;2012-02-10

5. Room temperature ferromagnetism in Teflon due to carbon dangling bonds;Nature Communications;2012-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3