Investigations on the Aluminum/Para-Hexaphenyl Interface in Light Emitting Devices

Author:

Koch N.,Yu L.-M.,Guyaux J.-L.,Morciaux Y.,Leising G.,Pireaux J.-J.,Demoustier G.

Abstract

AbstractBlue light emitting devices (LED) with para-hexaphenyl (PHP) as the active material and aluminum as cathode exhibit very high quantum efficiencies. To further optimize device performance it is crucial to understand the physical properties of the involved interfaces. We have performed Rutherford-Backscattering experiments on actual devices to show the importance of oxygen in the interface formation at the cathode as this leads to the formation of a layer of AlxOy between PHP and aluminum. In devices, where the organic film is exposed to air before the metal electrode is evaporated, an insulating layer on the metal-side therefore is inherent. It has been shown that the introduction of an intermediate layer between active material and electrodes results in a higher quantum efficiency of the LED, the most common concepts being charge-transport-layers, or insulators on the other hand. Our results underline the need for a better control of the LED processing. Ultraviolet- and X-ray photoelectron spectroscopy in situ growth studies of thin aluminum films on PHP have been made to reveal the change in the electronic structure of the active medium in a LED in the absence of oxygen. Also the direct interaction of oxygen with this organic material is investigated by photoelectron spectroscopy.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Organic-Metal Interfaces;Conjugated Polymer And Molecular Interfaces;2001-10-18

2. Preparation and characterisation of ultrathin films of In2O3 on NiIn(0001);Surface Science;2000-02

3. Low-onset organic blue light emitting devices obtained by better interface control;Applied Physics Letters;1999-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3