Abstract
AbstractThe performance of advanced flat panel displays is intrinsically linked to critical properties of the substrate material. In the manufacture of active-matrix liquid crystal displays (AMLCDs) and some emissive displays, there are certain process steps that require extreme conditions such as strong chemical washes and temperatures in excess of 600°C. As a result, the glass substrate used in these displays must be able to withstand these environments without degradation of its properties. It has become apparent that the flat panel display (FPD) manufacturers will benefit from substrates with improved acid durability, higher temperature capability, and thermal expansion coefficients consistent with other display materials.This paper focuses on one of the less-understood features of the glass substrate: the expansion characteristics as a function of temperature. Thermal expansion is important as it affects the compatibility of the glass with display materials, which, in the case of AMLCDs and some silicon-microtip field emission displays (FED), require an expansion close to that of silicon. In addition, thermal breakage during processing is directly proportional to the expansion coefficient.This study focused on the thermal expansion characteristics of two different FPD substrate glasses. The first one is code 7059, manufactured by Corning Incorporated and currently the standard in AMLCDs. A new substrate composition, Corning code 1737, with enhanced durability, temperature capability, and expansion tuned to the AMLCD applications will also be discussed.
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. 10. Anma M. (internal Coming Incorporated memorandum).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献