Growth Chemistry of Nanocrystalline Si:H Films

Author:

Dalal Vikram L.,Muthukrishnan Kamal,Stieler Daniel,Noack Max

Abstract

AbstractWe report on the growth of nanocrystalline Si:H films using both plasma CVD and remote hot wire deposition under systematically varied growth conditions. The films were grown from mixtures of silane and hydrogen. It was found that when the films were grown under low pressure VHF plasma growth conditions, the orientation of the film changed as the pressure increased. At the lowest pressures, the films were mainly <111> oriented, but changed to <220> orientation as the pressure increased. The grain size increased as the growth temperature increased. When the films were grown using remote hot wire deposition, the orientation depended upon both hydrogen dilution and growth temperature. As the hydrogen dilution increased, the <220> grain size became smaller. Grain size as large as 36 nm was obtained by controlling the growth conditions in hot wire deposition. As the growth temperature increased, the size of <220> grains increased. Growth rates also increased with increasing temperature. The data can be explained by invoking a growth model which recognizes that the natural growth direction for Si is <220>, since the surface energy is highest for (220) plane. Random nucleation leads to <220> grains. Bonded H is believed to inhibit the growth of <220> grains.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3