Author:
Yan Baojie,Owens Jessica M.,Jiang Chun-Sheng,Yang Jeffrey,Guha Subhendu
Abstract
AbstractAg/ZnO back reflectors (BR) on specular stainless steel substrates are optimized for hydrogenated amorphous silicon germanium alloy (a-SiGe:H) and nanocrystalline silicon (nc-Si:H) solar cells. The BRs are deposited using a sputtering method. The texture of the Ag and ZnO layers is controlled by deposition parameters as well as chemical etching with diluted HCl. The surface morphology is investigated by atomic force microscopy. The scattered light intensity from a He-Ne laser, which illuminates the sample surface perpendicularly, is measured at different angles. Finally, a-SiGe:H and nc-Si:H solar cells are deposited on the BR substrates prepared under various conditions. For a-SiGe:H bottom cells, the improved BR with large micro-features leads to an enhanced open-circuit voltage. For the nc-Si:H solar cells, large micro-features on the improved BR eliminate interference fringes otherwise observed in the quantum efficiency measurement and result in high short circuit current density. The result is consistent with an enhanced scattered light intensity. Hence, the cell performance was improved. We also deposited a-Si:H/a-SiGe:H/nc-Si:H triple-junction cells on the optimized BR and achieved a high initial active-area efficiency of 14.6%.
Publisher
Springer Science and Business Media LLC
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献