Abstract
The idea of first-principles methods is to determine the properties of materials by solving the basic equations of quantum mechanics and statistical mechanics. With such an approach, one can, in principle, predict the behavior of novel materials without the need to synthesize them and create a virtual design laboratory. By showing several examples of new electrode materials that have been computationally designed, synthesized, and tested, the impact of first-principles methods in the field of Li battery electrode materials will be demonstrated. A significant advantage of computational property prediction is its scalability, which is currently being implemented into the Materials Genome Project at the Massachusetts Institute of Technology. Using a high-throughput computational environment, coupled to a database of all known inorganic materials, basic information on all known inorganic materials and a large number of novel “designed” materials is being computed. Scalability of high-throughput computing can easily be extended to reach across the complete universe of inorganic compounds, although challenges need to be overcome to further enable the impact of first-principles methods.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
220 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献