Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials

Author:

Raabe Dierk,Choi Pyuck-Pa,Li Yujiao,Kostka Aleksander,Sauvage Xavier,Lecouturier Florence,Hono Kazuhiro,Kirchheim Reiner,Pippan Reinhard,Embury David

Abstract

We review microstructures and properties of metal matrix composites produced by severe plastic deformation of multiphase alloys. Typical processings are wire drawing, ball milling, roll bonding, equal-channel angular extrusion, and high-pressure torsion of multiphase materials. Similar phenomena occur between solids in frictional contact such as in tribology, friction stir welding, and explosive joining. The resulting compounds are characterized by very high interface and dislocation density, chemical mixing, and atomic-scale structural transitions at heterointerfaces. Upon straining, the phases form into nanoscaled filaments. This leads to enormous strengthening combined with good ductility, as in damascene steels or pearlitic wires, which are among the strongest nanostructured bulk materials available today (tensile strength above 6 GPa). Similar materials are Cu-Nb and Cu-Ag composites, which also have good electrical conductivity that qualifies them for use in high-field magnets. Beyond the engineering opportunities, there are also exciting fundamental questions. They relate to the nature of the complex dislocation, amorphization, and mechanical alloying mechanisms upon straining and their relationship to the enormous strength. Studying these mechanisms is enabled by mature atomic-scale characterization and simulation methods. A better understanding of the extreme strength in these materials also provides insight into modern alloy design based on complex solid solution phenomena.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3