Author:
Caciuffo R.,Buck E. C.,Clark D. L.,van der Laan G.
Abstract
Advanced spectroscopic techniques provide new and unique tools for unraveling the nature of the electronic structure of actinide materials. Inelastic neutron scattering experiments, which address temporal aspects of lattice and magnetic fluctuations, probe electromagnetic multipole interactions and the coupling between electronic and vibrational degrees of freedom. Nuclear magnetic resonance clearly demonstrates different magnetic ground states at low temperature. Photoemission spectroscopy provides information on the occupied part of the electronic density of states and has been used to investigate the momentum-resolved electronic structure and the topology of the Fermi surface in a variety of actinide compounds. Furthermore, x-ray absorption and electron energy-loss spectroscopy have been used to probe the relativistic nature, occupation number, and degree of localization of 5f electrons across the actinide series. More recently, element- and edge-specific resonant and non-resonant inelastic x-ray scattering experiments have provided the opportunity of measuring elementary electronic excitations with higher resolution than traditional absorption techniques. Here, we will discuss results from these spectroscopic techniques and what they tell us of the electronic and magnetic properties of selected actinide materials.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献