Cellulose Biocomposites—From Bulk Moldings to Nanostructured Systems

Author:

Berglund Lars A.,Peijs Ton

Abstract

AbstractCellulose biocomposites are widely used in industry as a low-cost engineering material with plant fiber reinforcement. However, chemical and microstructural heterogeneity causes low strength, low strain-to-failure, high moisture sensitivity, and odor and discoloration problems. Efforts toward improved performance through fiber orientation control, increased fiber lengths, and biopolymer use are reviewed. Interfacial strength control and moisture sensitivity are remaining challenges. As an attractive alternative reinforcement, high-quality cellulose nanofibers obtained by wood pulp fiber disintegration can be prepared at low cost. These nanofibers have high length/diameter ratios, diameters in the 5–15 nm range, and intrinsically superior physical properties. Wood cellulose nanofibers are interesting as an alternative reinforcement to more expensive nanoparticles, such as carbon nanotubes. Nanopaper and polymer matrix nanocomposites based on cellulose nanofiber networks show high strength, high work-of-fracture, low moisture adsorption, low thermal expansion, high thermal stability, high thermal conductivity, exceptional barrier properties, and high optical transparency. The favorable mechanical performance of bioinspired foams and low-density aerogels is reviewed. Future applications of cellulose biocomposites will be extended from the high-volume/low-cost end toward high-tech applications, where cellulose properties are fully exploited in nanostructured materials.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3