Surface Modification Technologies for Durable Space Polymers

Author:

Kleiman J.I.

Abstract

AbstractMany polymers, paints, and organic-based materials exposed to the space environment undergo dramatic changes and irreversible degradation of physical and functional characteristics. While many protective approaches, including protective coatings and mechanical metal foil wrapping or cladding—especially for synthesized bulk materials, are used to reduce the effects of the space environment, the protection of such materials in space remains a major challenge, especially for future long-duration exploration missions or permanent space stations. In addition to the traditional approaches, surface modification processes are used increasingly to protect or to impart new properties to materials used in the space environment. This article presents a brief overview of the present situation in the field of surface modification of space materials. A number of surface modification solutions that differ from the traditional protective coating approaches are discussed that change the surface properties of treated materials, thus protecting them from the hazards of low Earth orbit and geostationary orbit environments or imparting new functional properties. Examples of their testing, characterization, and applications are provided.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference60 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3