Lessons from Nature—Biomimetic Approaches to Minerals with Complex Structures

Author:

Sommerdijk Nico A.J.M.,Cölfen Helmut

Abstract

AbstractIn biology, organic-inorganic hybrid materials are used for several purposes, in particular, for protection and mechanical support. These materials are generally optimized for their function through precise control over the structure, size, shape, and assembly of the component parts and can be superior to many synthetic materials. The shapes and forms of minerals encountered in nature strongly contrast with those that are generally formed in a synthetic environment. According to current understanding, this is achieved through different modes of control: their shape can be controlled by restricting their growth to a confined space or by influencing their preferred direction of growth; in addition, for crystalline materials, polymorph selection and oriented nucleation are achieved through specific interactions between a template or additive and the developing nucleus. Also, controlled arrangement of nanoparticles into superstructures can lead to a complex structure. The understanding and, ultimately, the mimicking of these processes will provide new synthetic routes to specialized organic-inorganic hybrid materials. On the other hand, transformation of existing complex hierarchical natural structures such as wood or diatom frustules into other materials using shape-preserving chemistry is another approach toward minerals with complex biomimetic structure. The theme topic in this issue will focus on recent biomimetic and bioinspired approaches used to achieve control over the shape and organization of mineral and organic-inorganic hybrid materials. The different contributions will also highlight the advantages of these methods for advanced materials synthesis, and possible applications will be discussed.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3