Surface Over-Melt During Laser Polishing of Indirect-SLS Metal Parts

Author:

Ramos J. A.,Bourell D. L.,Beaman J. J.

Abstract

ABSTRACTLaser polishing of indirect-SLS parts made from 420 stainless powder infiltrated with bronze has been achieved using CO2 and Nd:YAG lasers. Two mechanisms have been previously proposed for the reduction in surface roughness, namely: shallow surface melting (SMM) and surface over-melt (SOM). In SMM reflow of the molten surface minimizes the peak-valley height driven by capillary pressure and liquid curvature. On the other hand, during SOM the melting depth is such that the entire surface becomes liquid and formation of surface periodical structures dominates driven by a surface tension gradient. This surface morphology was identified by means of optical and scanning electron microscopy (SEM). The onset of this regime is dictated by the energy density (i.e., ratio of laser power to scan speed and beam diameter) as well as the initial roughness Ra value prior to laser surface polishing. In contrast with SMM, onset of the latter mechanism increases the roughness Ra with speed reduction. A thermo-physical model is presented, signaling good agreement with roughness Ra and characteristic surface wavelength results obtained for varying laser beam scan speeds. Understanding the surface over-melt mechanism is critical for determining the optimum polishing conditions that minimize roughness.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference13 articles.

1. Surface rippling induced by surface‐tension gradients during laser surface melting and alloying

2. Solid Freeform Fabrication: A New Direction in Manufacturing

3. Investigation of surface topography after melting by laser beam;Avanesov;SPIE

4. Direct Rapid Manufacturing – Is it Possible?;Connolly;Time Compression Technologies,2001

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3