CuInS2/PEDOT Photovoltaic Structure

Author:

Bereznev Sergei,Konovalov Igor,Kois Julia,Mellikov Enn,Öpik Andres

Abstract

AbstractStructures based on combination of electrically conductive polymers with inorganic semiconductors are currently intensively investigated with the aim to prepare low-cost, largearea and flexible photovoltaic devices. In this study, multilayer structures consisting of CuInS2 (CIS) and poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrenesulfonate (PSS) thin films were prepared and investigated for photovoltaic applications. Polycrystalline CIS absorber layers were synthesized on top of a layered structure on Cu tape substrate using socalled non-vacuum CISCuT technique. Thin PEDOT buffer layers doped with PSS were deposited onto KCN etched and vacuum annealed CIS films. The deposition was performed using the spin-casting technique from an aqueous dispersion of PEDOT/PSS mixed with Nmethylpyrrolidone, isopropanol, glycerin and epoxysilane additives. Optimal deposition parameters for stable PEDOT films with a good adherence to the surface of CIS were selected experimentally. The morphology and thickness of prepared films and structures was determined using SEM technique. Average film thickness was about of 1.5 μm for CIS and 50 nm for PEDOT films. Current-voltage and impedance characteristics were measured. Significant photovoltage and photocurrent of the photovoltaic structures were observed under standard illumination intensity. The best structure showed an open-circuit voltage of 510 mV and a shortcircuit current density of 20.2 mA/cm2.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3