Author:
Soibel Alexander,Mansour Kamjou,Spiers Gary,Forouhar Siamak
Abstract
AbstractThere is a need in NASA for development of mid-infrared (mid-IR) lasers, such as Quantum Cascade (QC) lasers, for in-situ and remote laser spectrometers. Mid-IR, compact, low power consumption laser spectrometers have a great potential for detection and measurements of planetary gases and biological important biomarker molecules such as H2O, H2O2, CH4, and many additional chemical species on Mars and other planets of Solar systems. Other applications of mid-IR QC lasers are in high power remote Laser Reflectance Spectrometer (LRS) instruments for future NASA outer solar system explorations. In LSR instruments, QC lasers will act as the illumination source for conducting active mid-IR reflectance spectroscopy of solidsurfaced objects in the outer Solar System. LRS instruments have the potential to provide an incredible amount of information about the compositions of surfaces in the outer Solar System. In this work, we will discuss our current effort at JPL to develop and improve the mid-IR QC lasers to a level that the laser performance, operational requirements and reliability will be compatible with the instruments demands for space exploration applications.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献