Diamond Growth Rates and Quality: Dependence on Gas Phase Composition

Author:

Cassidy William D.,Evans Edward A.,Wang Yaxin,Angus John C.,Bachmann Peter K.,Hagemann Hans-Jurgen,Leers Dieter,Wiechert Detlef U.

Abstract

ABSTRACTDiamond growth rates and quality were studied as a function of source gas composition and correlated with position on the ternary C-H-O diagram. The chemical potentials of carbon and oxygen change dramatically on either side of the H2-CO tie line, leading to large differences in the equilibrium distribution of species. These differences are reflected in the species flux reaching the diamond surface, and hence in the quality and growth rate of the diamond. In situ microbalance measurements in a hot-filament reactor show that the reaction rate is independent of the CO concentration, but decreases with increasing O2. Quality, as measured by Raman spectroscopy, increases as the C/C+O ratio in the source gases is reduced to approach the critical value of 0.5. The stability of the filaments to decarburizing and oxidation are correlated with the carbon and oxygen chemical potentials and hence to the position on the C-H-O diagram. A preliminary ternary diagram for the C-H-F system is presented.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semiconductor diamond;Ultra-Wide Bandgap Semiconductor Materials;2019

2. Techniques of Electrode Fabrication;Electrochemistry for the Environment;2009-09-21

3. Precursors of diamond films analysed by molecular beam mass spectrometry of microwave plasmas;Diamond and Related Materials;2004-01

4. Construction of a new C–H–O ternary diagram for diamond deposition from the vapor phase;Diamond and Related Materials;2000-07

5. OES study of the plasma during CVD diamond growth using CCl 4 /H 2 /O 2 mixtures;Diamond and Related Materials;2000-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3