Synthesis and Characterization of Copper (I) Chloride (CuCl) Nanocrystals in Conductive Polymer for UV Light Emitters

Author:

Alam M. M.,Lucas F. Olabanji,Cowley A.,Crowley Karl,Daniels S.,Rajani K.V.,McNally P. J.

Abstract

AbstractIntrinsic γ-Copper (I) Chloride is an ionic I-VII compound semiconductor material with relatively low conductivity. To fabricate an efficient electroluminescent device based on CuCl nanocrystals (NC) the conductivity of the CuCl NC film should be relatively high. In order to improve the conductivity of CuCl films, nanocrystals were embedded in a highly conductive polymer (Polyaniline) and deposited on glass substrates via the spin-coating method. The deposited films were heated at 140°C for durations between 1 and 12 hours in vacuo. The room temperature UV-Vis absorption spectra for all CuCl films showed both Z1,2 and Z3 excitonic absorption features and the absorption intensity increased as the anneal time increased. Room temperature photoluminescence (PL) measurements of the hybrid films reveal very intense Z3 excitonic emission. Room temperature X-ray diffraction (XRD) confirmed the preferential growth of CuCl nanocrystals whose average size is ≈40 nm in the <111> orientation. Resistivity measurements were carried out using a four-point probe system, which confirmed that the resistivity of the composite film was ≈500 Ω/cm. This is an improvement when compared to the vacuum evaporated CuCl thin films.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3