Author:
Indluru Anil,Venugopal Sameer M,Allee David R,Alford Terry L
Abstract
AbstractHydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) are widely used in many areas and the most important application is in active matrix liquid crystal display. However, the instability of the a-Si:H TFTs constrains their usability. These TFTs have been annealed at higher temperatures in hope of improving their electrical performance. But, higher anneal temperatures become a constraint when the TFTs are grown on polymer-based flexible substrates. This study investigates the effect of anneal time on the performance of the a-Si:H TFTs on PEN. Thin-film transistors are annealed at different anneal times (4 h, 24 h, and 48 h) and were stressed under different bias conditions. Sub-threshold slope and the off-current improved with anneal time. Off-current was reduced by two orders of magnitude for 48 hours annealed TFT and sub-threshold slope became steeper with longer annealing. At positive gate-bias-stress (20 V), threshold voltage shift (∆Vt) values are positive and exhibit a power-law time dependence. High temperature measurements indicate that longer annealed TFTs show improved performance and stability compared to unannealed TFTs. This improvement is due to reduction of interface trap density and good a-Si:H/insulator interface quality with anneal time.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献