Electrical Detection of Oscillations in Micro- and Nano- Cantilevers Using Harmonic Detection of Resonance

Author:

Gaillard J.,Ciocan Razvan,Skove Malcolm J.,Rao Apparao M.

Abstract

ABSTRACTAccurate determination of the resonant frequency, phase and quality factor in micro and nano-mechanical oscillators permits the detection of: (i) trace amounts of specific adsorbed molecules which affect the resonant frequency; (ii) pressure variations which affect the mechanical damping of the oscillator; or (iii) the temperature dependence of the elastic properties of the oscillator through a shift in the resonant frequency. To date, electrical detection of oscillations in cantilevered multiwalled carbon nanotubes (MWNTs) has eluded researchers in the field. Electrical detection allows a simple means for measuring the resonance frequency, phase and quality factor of cantilevers built into integrated circuits, or cantilevers whose response can be monitored as a function of any external parameter such as temperature or pressure. To this end, we described a fully electrical (actuation and detection) method termed harmonic detection of resonance (HDR) to measure mechanical oscillations in ambient conditions for two systems: Si-based micro- and MWNT based nano-cantilevers. Furthermore, we demonstrate that the resonant frequency in micro- and nano-cantilevers can be tuned without appreciable change in the quality factor which suggests that HDR is an ideal platform in device design and applications.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning for Nonlinear Characterization of Electrostatic Vibrating Beam MEMS;International Journal of Bifurcation and Chaos;2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3