New Directions in Bulk Thermoelectric Materials Research: Synthesis of Nanoscale Precursors for “Bulk-Composite” Thermoelectric Materials

Author:

Tritt Terry M.,Zhang Bo,Gothard Nick,He Jian,Ji Xiaohua,Thompson Daniel,Kolis Joe

Abstract

ABSTRACTOver a decade ago it was predicted that nano-scaled thermoelectric (TE) materials might have superior properties to that of their bulk counterparts. Subsequently, a significant increase in the figure of merit, ZT (ZT > 2), has been reported for nano-scaled systems such as superlattice and quantum dot systems constituently based on those more commonly used bulk TE materials (e.g., Bi2Te3 and PbTe). However, the challenge remains to achieve these higher performance results in bulk materials in order to more rapidly incorporate them into standard TE devices. Recent theoretical work on boundary scattering of phonons in amorphous materials indicates that micron and submicron grains could be very beneficial in order to lower the lattice thermal conductivity and yet not deteriorate the electron mobility. The focus in this paper will be to highlight some of our new directions in bulk thermoelectric materials research. Thermoelectric materials are inherently difficult to characterize and these difficulties are magnified at high temperatures. Specific materials will be discussed, especially those bulk materials that exhibit favorable properties for potential high temperature power generation capabilities. One potentially fruitful research direction is to explore whether hybrid TE materials possess possible enhanced TE properties. These “engineered” hybrids include materials that exhibit sizes from on the order of a few nanometers to hundreds of nanometers of the initial materials. These initial materials are then incorporated into a bulk structure. A discussion of some of the future research directions that we are pursuing is highlighted, including some bulk materials, which are based on nano-scaled or hybrid composites. The synthesis techniques and the synthesis results of many of these nano-scale precursor materials will be a primary focus of this paper.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3