Solute Trapping in Metals

Author:

Smith Patrick M.,Reitanot Riccardo,Aziz Michael J.

Abstract

ABSTRACTMany of the advances in rapid solidification processing of metallic alloys exploit the trapping of solute which occurs at high solidification velocities. The difficulty of performing experiments which measure such high solidification velocities in metals has until now prevented accurate measurements of solute trapping in these systems. We have observed the transition from near-equilibrium solute partitioning to solute trapping during solidification at m/s velocities in aluminum alloys, and have compared the predictions of various solute trapping models. Aluminum thin films deposited on insulators were ion-implanted with Sn, Cu, Ge, and In, and were pulsed-laser melted; plane-front solidification was achieved, and regrowth velocities of 0.6 m/s to 5 m/s were measured with the transient conductance technique. Of the existing solute trapping models, the Continuous Growth Model of Aziz was found to fit the observed dependence of the partition coefficient on solidification velocity more closely than any other single-parameter model. The diffusive speed, which locates the transition from solute partitioning to solute trapping, was found to vary from 6 m/s to 38 m/s for various solutes in aluminum. We have examined correlations between the diffusive speed in the Continuous Growth Model and known alloy properties in order to allow better estimates of the diffusive speed to be made for alloy systems in which it has not been measured; the relation between the diffusive speed and the equilibrium partition coefficient will be discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3